A CONSERVATION FRAMEWORK FOR BETTER UNDERSTANDING RISKS AND THREATS TO FRESHWATER MUSSELS: A CASE STUDY OF THE MERAMEC RIVER BASIN, MISSOURI

Kayla Key

West TN River Basin Authority, TN Department of Environment and Conservation

Amanda Rosenberger

TN Cooperative Fishery Research Unit, TN Tech University

Kristen Bouska

U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Garth Lindner

Indiana Department of Natural Resources

How are mussels doing? Where should we focus efforts?

Defining the **Conservation Unit**

Figure 5. The steps of the mussel conservation assessment are intended to be adaptable to the needs and resources of natural resource agencies. Therefore, we provide examples of different areas of emphasis that align with each of our research steps.

Bouska et al., 2018. Fisheries

Develop a spatial assessment of the status and risks to mussel assemblages in the Meramec River Basin.

- 1. ID conservation unit
- 2. ID <u>suitable habitat</u> at scale relevant to managers & mussels
- 3. Spatially ID <u>threats</u> to mussels & ID areas at risk

4. Develop datasets and guidance for managers

Statewide MDC Long-term large dataset

Meramec River Basin: Heavily sampled Diverse (~40 sp) watershed

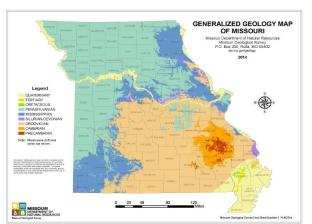
Conservation Unit = Mussel Beds

Modeling Mussel Communities as a unit

- Multi-species beds
- Hydrogeomorphic Variables
- Response variables
 - Presence/Absence of beds
 - Species Richness
 - Informative, cost effective
 - Measurable
 - ID & Quantify threat impacts

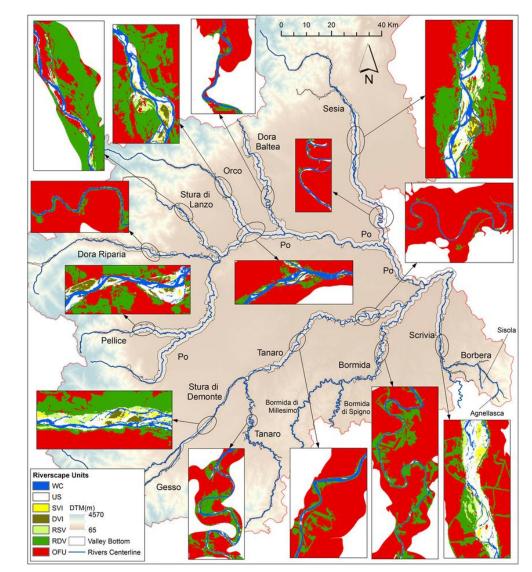
Defining the **Conservation Unit**

- Concentrations of assemblages (mussel beds)
- Single species of conservation concern
 Historically occupied habitat
- Rich assemblages at the reach, segment, or catchment scale


Bouska et al., 2018. Fisheries

Past Modeling Efforts

- Microhabitat scale
 - Quadrat substrate type and size
 - Difficult to scale up to watershed or even reach scale
- Reach scale
 - 100m reach
 - water chemistry & habitat type
 - Difficult to scale up to entire watershed
- Watershed scale
 - Information limits
 - Geology
 - Regional comparisons



Riverscape Scale

- Continuous
- Longitudinal
- Scalable
- Benefits
 - Predictive potential
 - Relevant to managers
 - Relevant to mussels?

Demarchi et al 2016

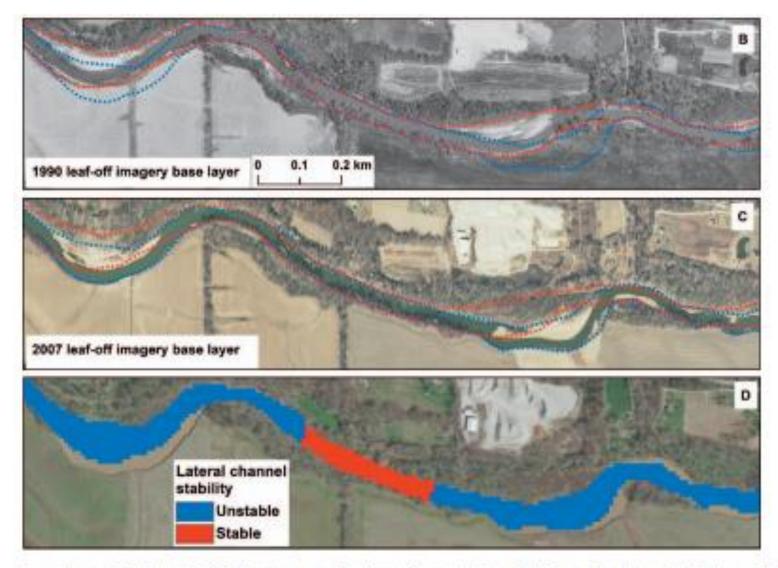
Goal 1: ID Suitable Habitat

Objectives

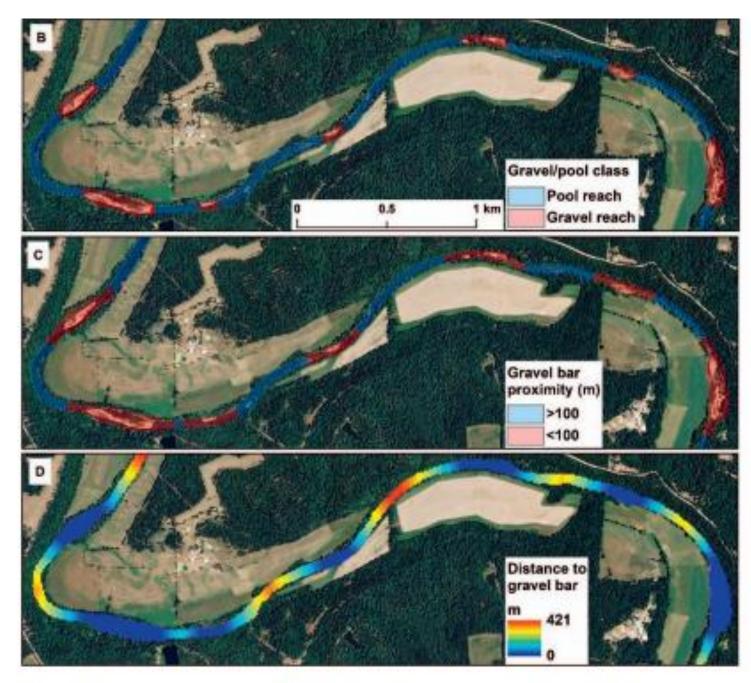
1. ID high richness bed locations

2. Derive "Riverscape" hydro-geomorphic variables

3. Develop a fundamental niche model

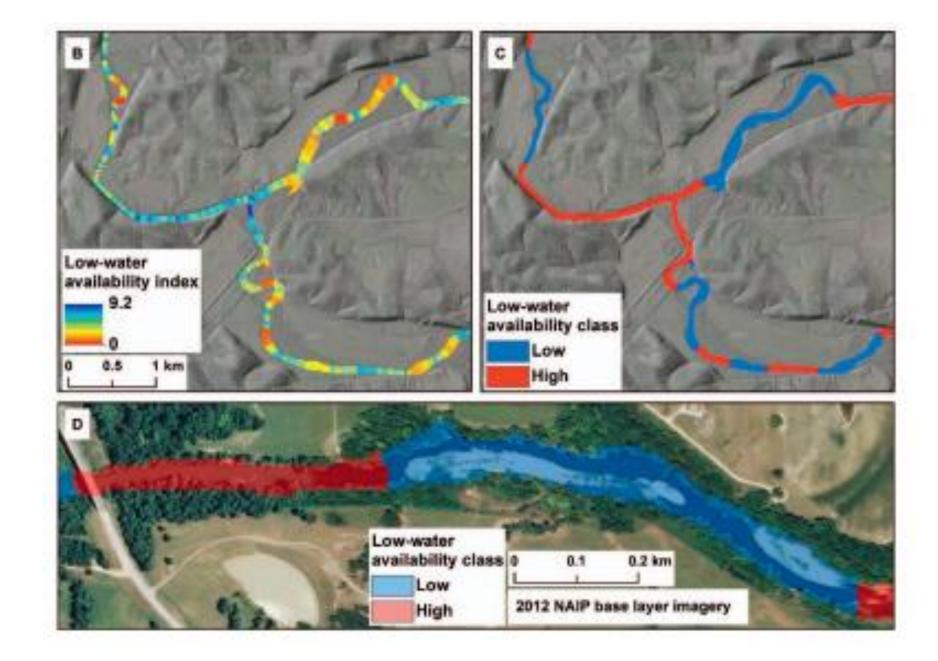

ID High Richness Locations

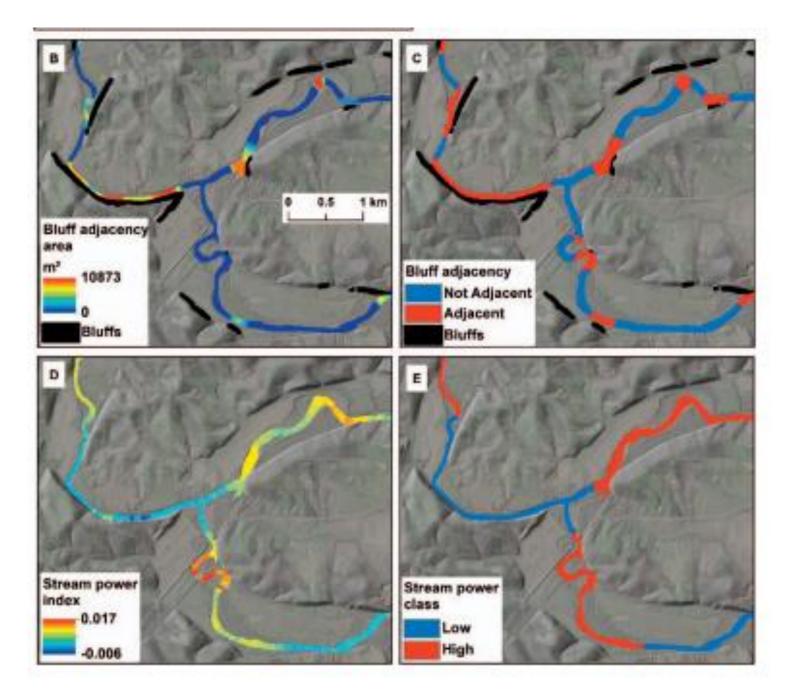
High SR (>70th)= Used in Model TrainingMid SR $(50^{th} - 70^{th})$ = Used in ValidationLow SR (< 50th)= Used in Validation


O ∞ œ Species richness COOD 0.7 o ο ∞ 0.5 ∞ O တထာထာထာထ O O œ ∞ ന 00 0 0000000 0 00 O o B 0 000 00 000 000000 O 00 0 O O O OD

Drainage Area

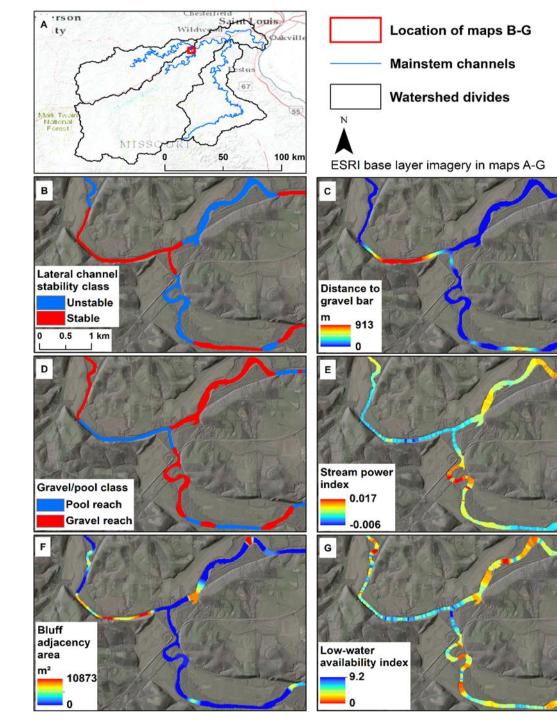
Lateral Channel Stability

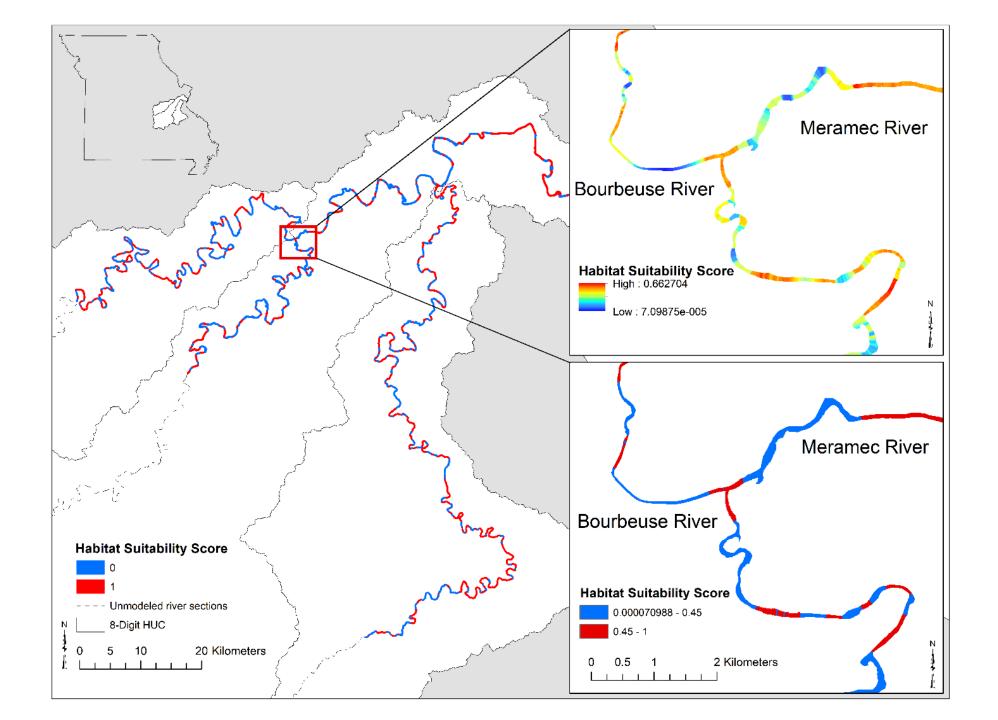

. Example maps of lateral channel stability layer: A) map of the Meramec River watershed with locations of the subsequent detailed maps, B) dig

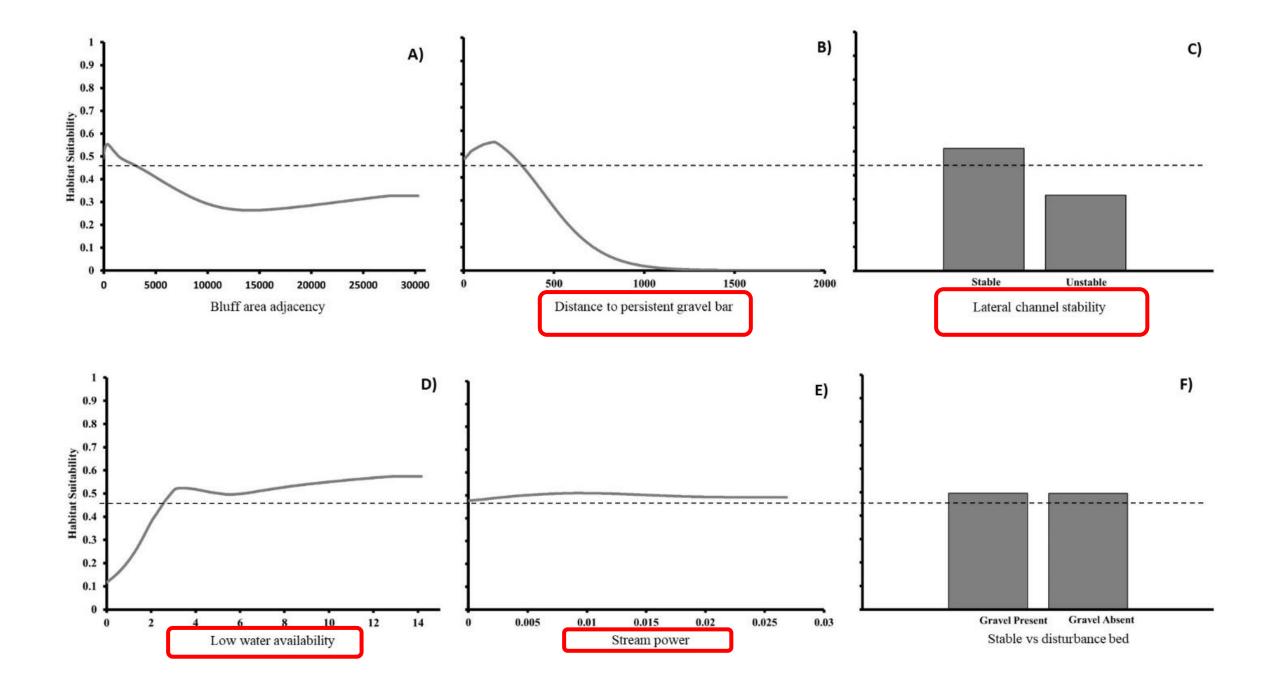


Gravel Bars

Ph. Particles of the sP second fraction and the second statement of the


Drought Refugia?


Bluffs?


Stream Power

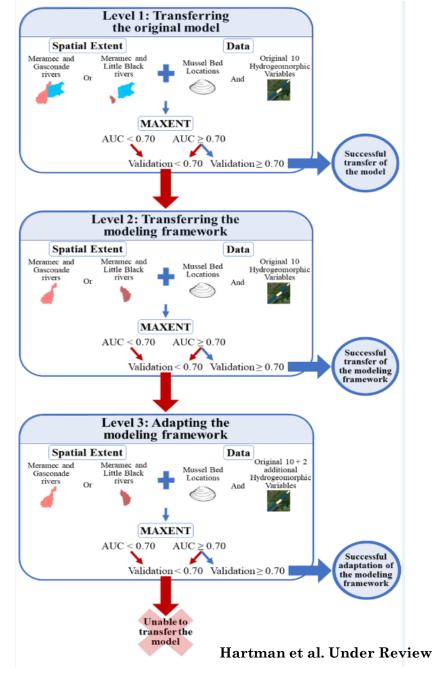
Final Model Hydrogeomorphic Riverscape scale variables

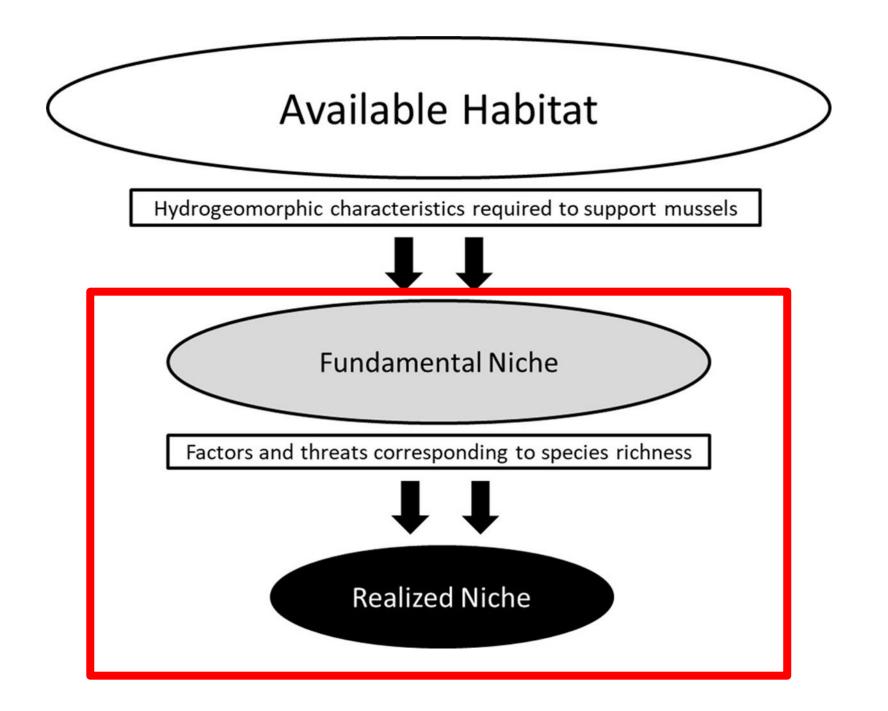
- Lateral stability
- Distance to stable gravel bar
- Presence of gravel
- Stream power
- Bluff area adjacency
- Low water

179 of 289 reaches = Suitable

83% (53/64) of Validation Beds within Suitable

7 seemed associated with similar portions of the channel

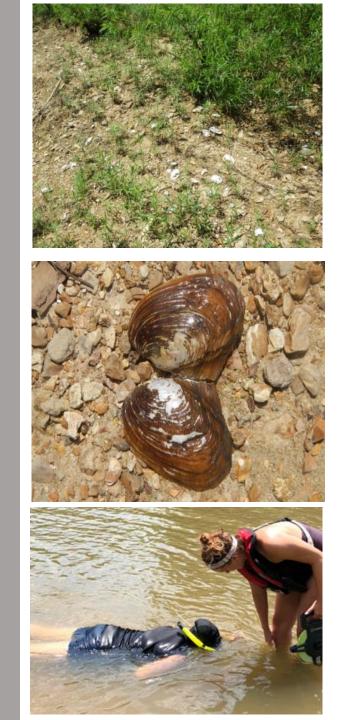

Goal 1 Outcomes

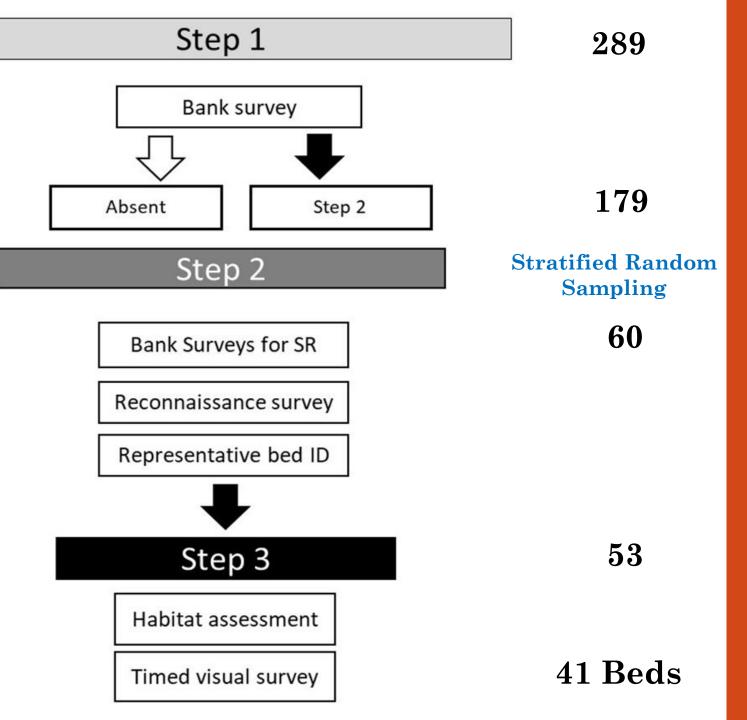

- 1. Mussel beds can be modeled as a unit
- 2. SR can be a useful metric
- 3. Riverscape hydrogeomorphic variables were successful in predicting suitable habitat
- Successfully tested in 2 other Ozark watersheds

Under review in FMBC:

Hartman et al.

ASSESSING POTENTIAL HABITAT FOR FRESHWATER MUSSELS BY TRANSFERRING A HABITAT SUITABILITY MODEL WITHIN THE OZARK ECOREGION, MISSOURI


Goal 2: Spatially ID threats & suitable reaches at risk


Objectives:

- Stratified random sampling field design SR data for suitable reaches
 ID & quantifying potential threats
- **3**. ID realized threats via modeling
- 4. Categorize & prioritize reaches

Potential Threat Covariates

Threat covariates

- 1. River
- 2. Length of reach
- 3. Distance to closest suitable reach
- 4. Distance to closest dam
- 5. Within 1km of a float zone
- 6. Within lead impact zone
- 7. Within 1km of a golf course
- 8. Within 1km of a landfill

24 variables tested in model development

Watershed & Reach level threat covariates

- 1. # of Road Crossings
- 2. P/A of Road Crossing
- 3. # of CAFOS
- 4. # of dams
- 5. *#* of hazardous waste generators
 - # of water treatment facilities
- 7. # of public access
- 8. % urban

6.

- 9. % barren
- 10. % forest
- 11. % agriculture
- 12. % grasslands
- 13. % wetlands
- 14. # of Road Crossings
- 15. # of CAFOS
- 16. # of dams
- 17. # of registered hazardous waste generators
- 18. # of water treatment facilities
- 19. # of outfall locations of stormwater
- 20. # of NPDES permitted discharge features

Two-Method Threat Modeling Approach

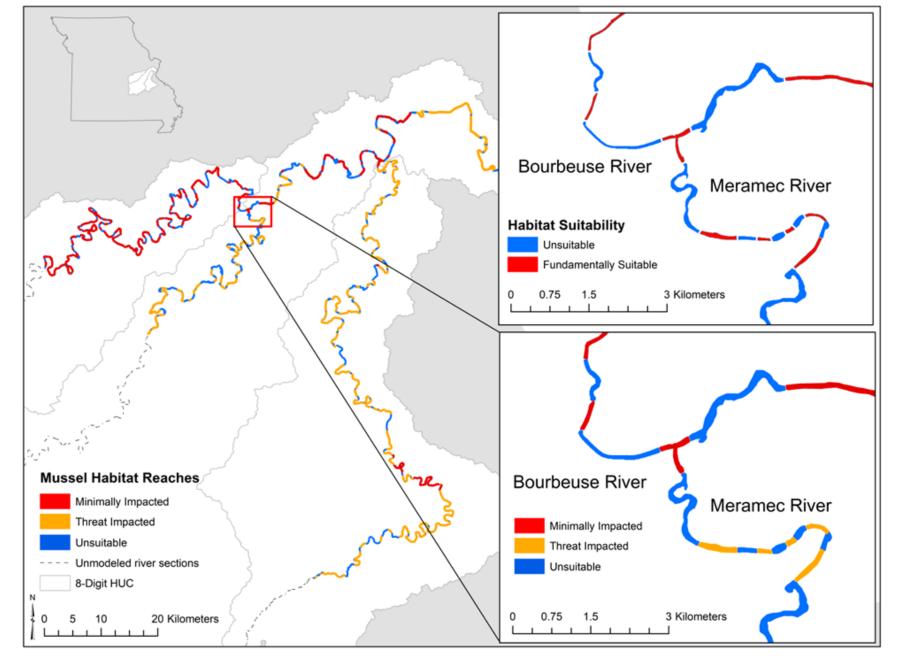
- 1. MaxEnt Modeling
 - ID threats that influence P/A of mussel beds
- 2. Occupancy Modeling
 - Account for imperfect detection (species specific effects)
 - Estimate <u>SR</u> for each suitable reach
 - ID threats that influence SR/specific species

Method 1

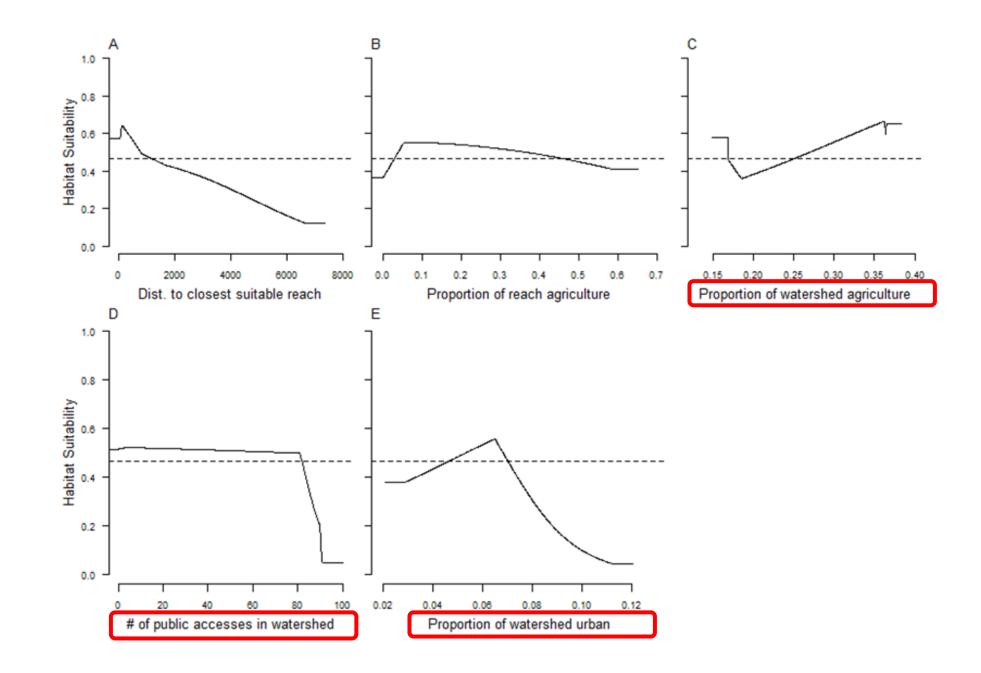
Maxent Threat Modeling

P/A Mussel Bed

Inputs

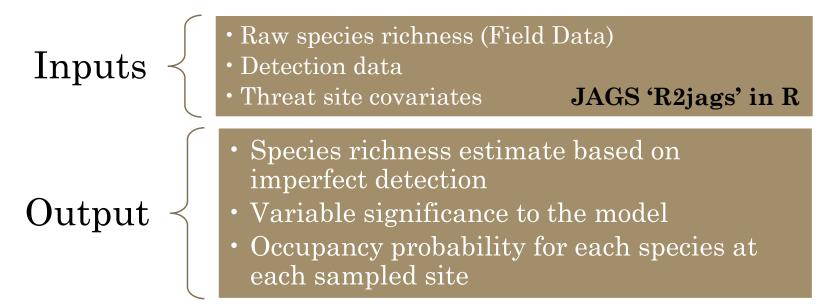

Mussel bed locations (n=41)Spatial threat variables

Outputs <


Binary Map

Equal specificity and sensitivity logistic threshold

Threat Impacted reaches (Low Scores)
Minimally Impacted reaches (High Scores)
Response curves for each threat


133 Minimally Impacted reaches and 156 Threat Impacted reaches

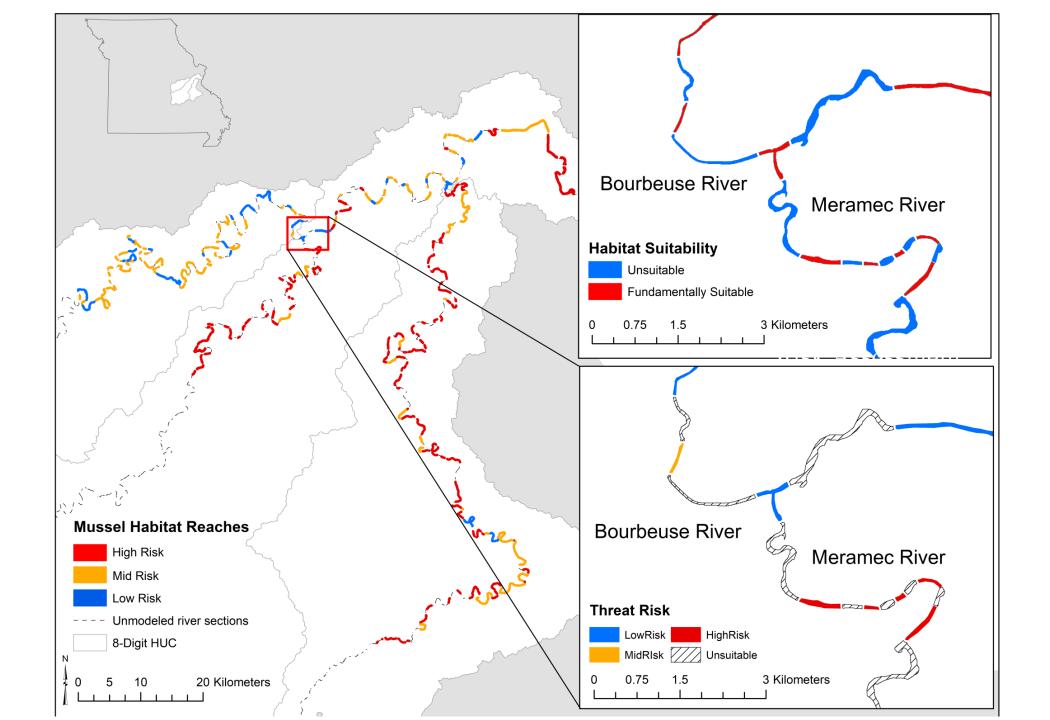
Method 2 Occupancy Modeling Species Richness

Species Specific Effects

Bayesian Framework with Markov chain Monte Carlo (MCMC)

Predict SR and species occupancy for **unsampled** sites using output species-specific presence probabilities associated with threats


Occupancy Modeling Results


Table 5. Hypotheses driven occupancy models for freshwater mussels in the Meramec Basin, Missouri with occupancy covariate and Bayesian p-values. Extreme values (<0.05 or > 0.95) indicated consistent bias in model estimates.

Model	Occupancy Variables	Bayesian p- value
Demographic	R.Length, River, DCSR	0.956
Fragmentation	W. BridgePA, R.BridgePA*, DCSR	0.96
Rural	FloatZone, R. BridgePA*, R. Agri, W.Agri, W.CAFOS,	0.962
	W.BridgePA	
Urban	R.Urban, FloatZone, W.Urban, R.StormWater, R.	0.9608
	BridgePA	
Water Quality	W.CAFOS, R.Agri, W.Urban	0.96
Physical	R. BridgePA*, FloatZone, W. BridgePA, R.Agri,	0.963
Disturbance	R.Urban	
Maxent	R.Agri, W. Agri, W.BridgePA, W.Urban, DCSR	0.955

* Indicates variable has significant influence on dependent variable

- Predict Species Richness Estimates
- Occupancy Probabilities
- ID risk level

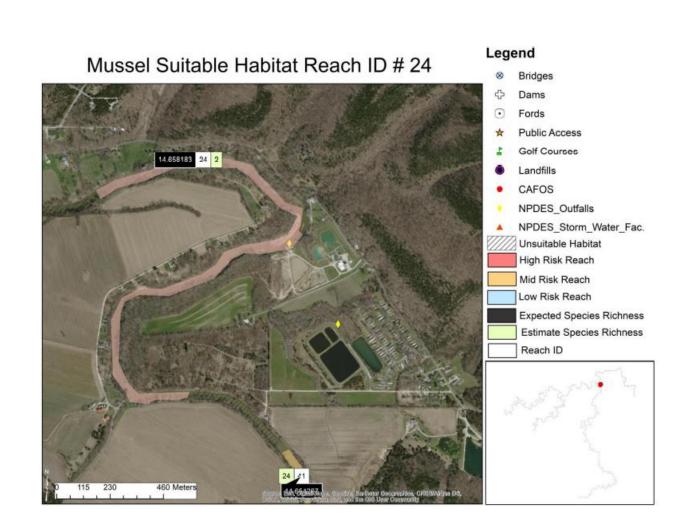

Risk Level	Objective	Frequency	Intensity
Low-risk	Determine if there are major changes to threat presence on landscape and if the mussel bed is still showing signs of healthy recruitment of juvenile mussels to the population.	Regular and infrequent for the mussel bed (e.g., every 5 years), yearly to determine presence of new threats on the landscape.	Low intensity monitoring focused on species richness and presence/absence of recruitment.
Mid-risk (mitigated or few threats)	Mussel recruitment and the addition of rare species to the population.	Targeted (e.g., where mitigation efforts are taking place or for certain species) and frequent (e.g., yearly).	High intensity monitoring to investigate recruitment potential of multiple species.
Mid-risk (Many threats)	Species richness, loss or addition of rare species.	Targeted (e.g., where threats are mitigable or for certain species) and frequent.	High intensity monitoring to investigate recruitment potential of multiple species.
High-risk	Species richness only.	Infrequent	Low intensity to focus on loss/gain of new species

Table 7. Guidance on monitoring objectives, frequency, and intensity for each risk level.

Monitoring by Risk Level

Deliverables to MDC

- Guidance document
 - Framework
 - Reach-specific information
 - all 289 suitable reaches
 - SR Predictions
 - Species occupancy probability
 - Threat information
- GIS Data
 - Spatial variables
 - Model results
- Modeling codes
- Adaptive framework

Legend

Bridges Dams Fords Public Access Golf Courses Landfills CAFOS NPDES_Outfalls NPDES_Storm_Water_Fac. Unsuitable Habitat High Risk Reach Mid Risk Reach Low Risk Reach **Expected Species Richness** Estimate Species Richness Reach ID

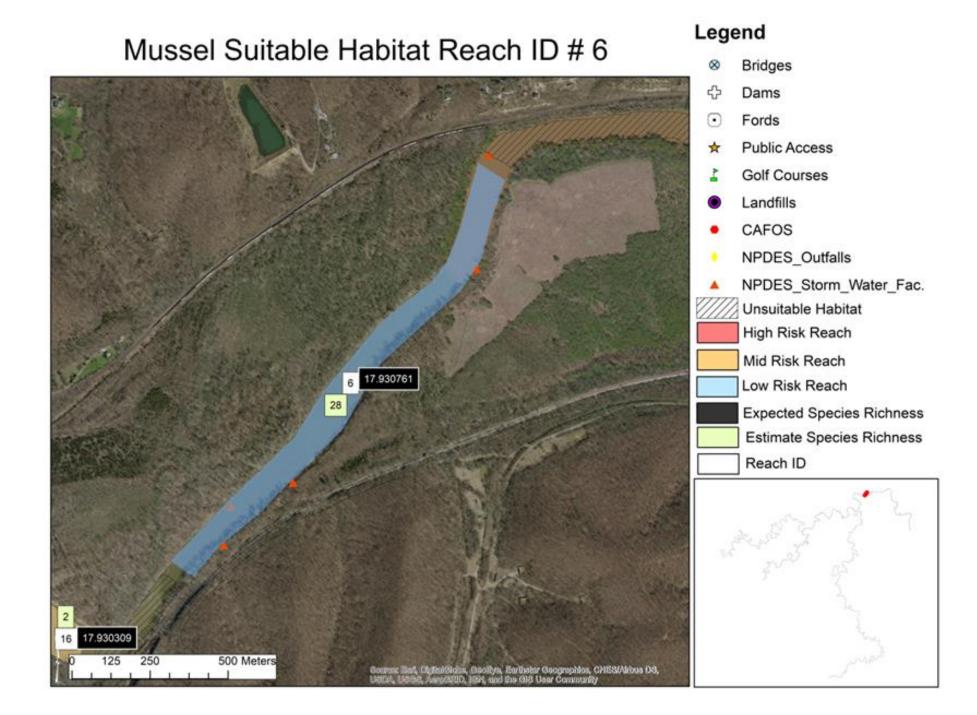


Table 9. Example of attribute table of the vector shapefiles give to state agency partners showing reach information and threat assessment results for each fundamentally suitable mussel habitat reach. Not all threats and RIDs are shown in this example due to space limitations. DAREA = Drainage area, CI = Credible interval.

RID	River	Length	DAREA	ExSR	EstSR	2.5% CI	97.5%CI	MaxEnt Threat Results	Risk_Level
1	LowMera	9109.837	10043.66	17.96838	29	6	38	0	Mid
2	LowMera	2609.068	9915.822	17.93786	2	0	7	0	High
3	LowMera	364.432	10192.94	18.00353	2	0	7	0	High
4	LowMera	4300.67	10087.12	17.97867	2	0	7	0	High
5	LowMera	314.31	9841.018	17.91982	2	0	0	1	Mid
6	LowMera	1662.628	9886.329	17.93076	28	0	38	1	Low
7	LowMera	1571.845	10092.93	17.98004	2	0	7	0	High
8	LowMera	729.667	9875.03	17.92804	2	0	7	1	Mid
9	LowMera	348.094	9813.484	17.91314	2	0	7	0	High
10	LowMera	563.954	9840.99	17.91981	2	0	7	1	Mid
11	LowMera	198.381	9876.531	17.9284	2	0	7	1	Mid
12	MidMera	651.463	7131.322	17.15246	2	0	6	1	Mid
13	MidMera	299.529	7252.193	17.19251	2	0	6	1	Mid
14	LowBourb	3990.331	2100.408	14.24002	26	7	38	1	Low
15	LowMera	325.837	9881.921	17.9297	2	0	7	1	Mid
16	LowMera	866.434	9884.452	17.93031	2	0	7	1	Mid
17	LowMera	993.374	9783.344	17.90581	35	20	38	1	Low
18	LowMera	6856.863	10173.85	17.99907	2	0	7	0	High
19	LowMera	534.225	9811.575	17.91268	2	0	7	1	Mid
20	MidMera	171.568	7254.133	17.19314	2	0	6	1	Mid

Table 10. A portion of the attribute table of the vector shapefiles give to state agency partners showing threat values for each fundamentally suitable mussel habitat reach. Not all threats and RIDs are shown in this example due to space limitations. Descriptions of threats can be found in Table 3.

RID	LeadImpact	Landfill	GolfCourse	Floattrip	DCSR	R.WaterFac	W.urban	W.forest
1	0	1	0	0	4872.926	29	0.069207	0.688389
2	0	1	0	0	3763.041	6	0.061304	0.693672
3	0	0	0	0	574.2383	1	0.075604	0.684335
4	0	1	1	0	2353.467	9	0.071892	0.686554
5	0	0	1	0	696.9908	0	0.060494	0.693297
6	0	0	0	0	2074.951	6	0.060824	0.693654
7	0	0	0	0	1600.411	4	0.072083	0.686436
8	0	0	0	0	561.0863	4	0.060674	0.693776
9	0	0	1	0	884.0518	0	0.059502	0.693903
10	0	0	1	0	696.9908	0	0.060494	0.693297
11	0	0	0	0	561.0863	0	0.060675	0.693803
12	0	0	0	0	805.84	0	0.055996	0.682432
13	0	0	0	1	525.6638	0	0.056349	0.683536
14	0	0	0	0	2403.453	0	0.0692	0.56351
15	0	0	0	0	653.4504	0	0.060836	0.693597
16	0	0	0	0	1579.478	1	0.06082	0.693645
17	0	1	0	0	1853.947	2	0.059314	0.693697
18	0	1	0	0	1703.533	9	0.074185	0.685407
19	0	1	0	0	487.5577	2	0.059469	0.693962
20	0	0	0	1	826.7977	0	0.056359	0.683369

Site	Species	Occupancy Probability
6	Actinonaias ligamentina	0.86
6	Alasmidonta marginata	0.77
6	Amblema plicata	0.81
6	Anodontoides ferussacianus	0.71
6	Cumberlandia monodonta	0.76
6	Cyclonaias tuberculata	0.68
6	Ellipsaria lineolata	0.87
6	Elliptio crassidens	0.68
6	Eurynia dilatata	0.72
6	Epioblasma triquetra	0.69
6	Fusconaia flava	0.81
6	Lampsilis abrupta	0.75
6	Lampsilis brittsi	0.97
6	Lampsilis cardium	0.96
6	Lampsilis siliquoidea	0.83
6	Lampsilis teres	0.66
6	Lasmigona complanata	0.67
6	Lasmigona costata	0.65
6	Leptodea fragilis	0.92
6	Leptodea leptodon	0.77
6	Ligumia recta	0.74
6	Megalonaias nervosa	0.67
6	Obliquaria reflexa	0.85
6	Plethobasus cyphyus	0.76
6	Pleurobema sintoxia	0.74
6	Potamilus alatus	0.91
6	Potamilus ohiensis	0.74
6	Pyganodon grandis	0.66
6	Quadrula fragosa	0.72
6	Quadrula metanevra	0.76
6	Cyclonaias pustulosa	0.74
6	Quadrula quadrula	0.65
6	Tritogonia verrucosa	0.72
6	Strophitus undulatus	0.68
6	Toxolasma parvus	0.75
6	Truncilla donaciformis	0.70
6	Truncilla truncata	0.74
6	Venustaconcha ellipsiformis	0.72

Table 8. Example of occupancy probability estimates generated from occupancy model for all species for each site.

Outcomes

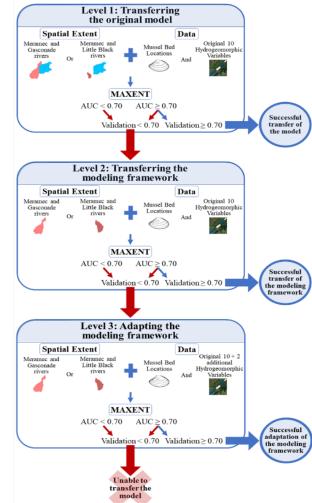
FEATURE

State-Level Freshwater Mussel Programs: Current Status and a Research Framework to Aid in Mussel Management and Conservation

Kristen L. Bouska | Missouri Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO 65211; and U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd, La Crosse, WI S4603. E-mail: kbouska@usgs.gov

Amanda Rosenberger | U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO

Stephen E. McMurray | Missouri Department of Conservation, Resource Science Division, Columbia, MO Garth A. Lindner and Kayla N. Key | Missouri Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO Freshwater Mollusk Biology and Conservation 24:43–58, 2021 © Freshwater Mollusk Conservation Society 2021 DOI:10.31931/fmbc-d-20-00002


REGULAR ARTICLE

RIVERSCAPE-SCALE MODELING OF FUNDAMENTALLY SUITABLE HABITAT FOR MUSSEL ASSEMBLAGES IN AN OZARK RIVER SYSTEM, MISSOURI

Kayla N. Key^{*1,2}, Amanda E. Rosenberger³, Garth A. Lindner^{†4}, Kristen Bouska⁵, and Stephen E. McMurray⁶

Successfully tested in other MO watersheds

Hartman et al. ASSESSING POTENTIAL HABITAT FOR FRESHWATER MUSSELS BY TRANSFERRING A HABITAT SUITABILITY MODEL WITHIN THE OZARK ECOREGION, MISSOURI

Framework being Implemented in TN

2 regions Duck River, TN <- Brittany Bajo-Walker Hatchie River, TN <-Looking for MS student!

Acknowledgements

Committee Members

- Amanda Rosenberger
- Kit Wheeler
- Justin Murdock
- Alfred Kalyanapu
- Tammy Boles
- Craig Paukert (MU)
- Jodi Whittier (MU)
- Susannah Ewrin (MU)


Guidance

- Garth Lindner
- Kristen Bouska
- Steve McMurray
- Scott Faiman
- Andy Roberts
- Leslie Lueckenhoff
- Matt Schrum
- Tom Blanchard
- Lance Williams

Field Assistance

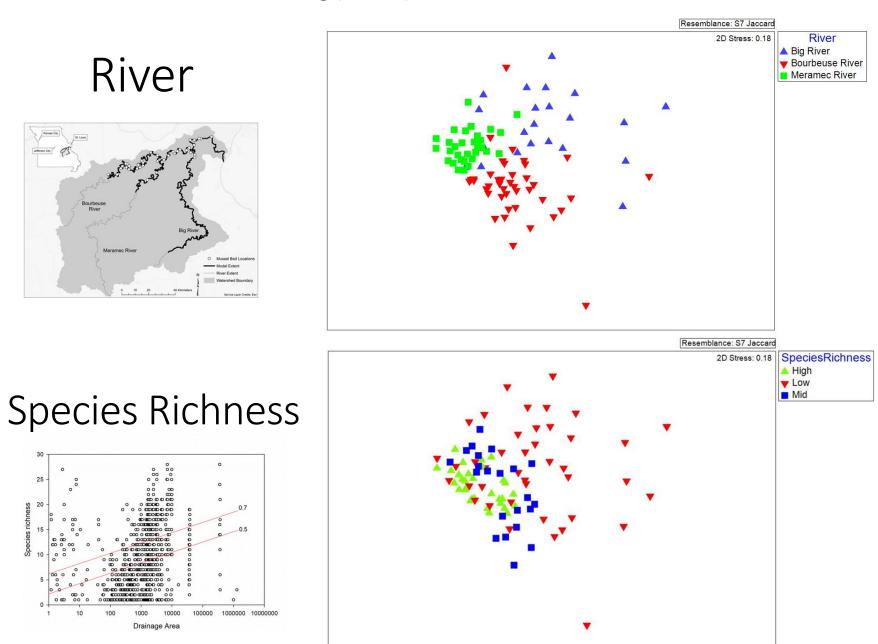
- Nick Ciaramitaro
- Joel Yeager
- Lauren Toivenen
- Matt Schrum
- Jake Adams
- Jordan Holtswarth
- Joe Chilton
- Trent Pearson
- Lauren Kelley

WEST TENNESSEE WTRBA RIVER BASIN AUTHORITY

Habitat characteristic	Class	Percent of layers	Percent of samples	Reach length minimum	Reach length maximum	Mean reach length	Reach length standard deviation
Bluff adjacency ("ba")	Adjacent	40.6	40.6	30	3,885	615	523
	Not adjacent	59.4	59.4	10	9,977	886	1,159
Gravel/pool class ("gpc")	Gravel	51.3	59.4	37	9,943	603	874
	Pool	48.7	40.6	50	4,392	571	498
Gravel bar proximity ("gbp")	<100 m	67.3	71.0	61	1,1761	845	1,028
	>100 m	32.7	29.0	10	4,187	412	502
Lateral channel stability ("lcs")	Stable	85.4	88.4	148	47,643	4,464	6,395
	Unstable	14.6	11.6	73	4,545	784	869
Low-flow surface water availability	High	58.1	55.1	95	7,216	1,392	1,304
class ("lwac")	Low	41.9	44.9	113	11,819	989	1,352
Stream power class ("spc")	High	43.1	50.7	47	6,661	1,014	900
-	Low	56.9	49.3	142	7,427	1,365	1,334

Table 2. Summary of values for each of the two classes of the six binary hydrogeomorphic variables and the values of the sample mussel beds for the same six layers. Included for both the six layers and the sample points are the percentages for each class, the minimum and maximum lengths (m) of each reach class, and the mean and standard deviation of each reach class.

Table 3. Minimum, maximum, mean, and standard deviation for the four continuous habitat layers that we generated and the values of the layers at mussel-bed locations.


Habitat characteristic	Layer/Location	Minimum	Maximum	Mean	Standard deviation
Bluff adjacency area ("baa)	Layer	0	28,173	1,393	2,769
	Mussel location	0	17,678	1,129	2,672
Distance to gravel bar ("dgb")	Layer	0	1,820	121	222
	Mussel location	0	371	67	105
Low-flow surface water availability	Layer	0	13.30	4.53	1.98
index ("lwai")	Mussel location	0.78	8.55	4.34	1.73
Stream power index ("spi")	Layer	-0.0146	0.0243	0.0035	0.0031
	Mussel location	-0.0073	0.0120	0.0037	0.0029

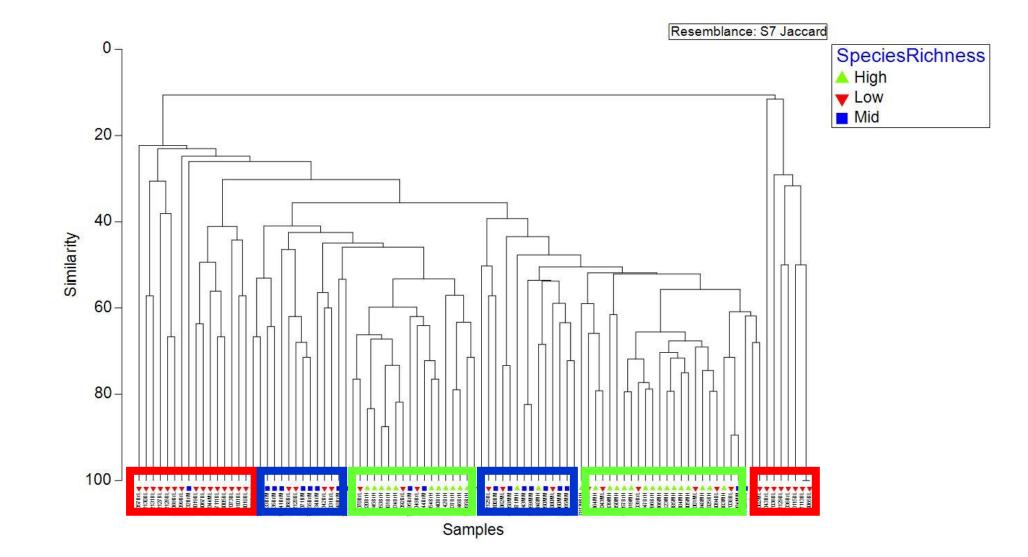

Habitat Characteristic ("layer name"): type	Justification	Description	Hypothesis
*Bluff adjacency area ("baa"): continuous	Conversations with malacologists indicate that mussel beds are usually found in the vicinity of bluffs	Total bluff area (m ²) within one channel width of each bank	The probability of mussel presence increases with increasing bluff area adjacent to the channel
Bluff adjacency ("ba"): binary	adjacent to the stream channel	Whether there is a bluff within one channel width of each bank	The probability of mussel presence increases in channels adjacent to bluffs
*Stream power index ("spi"): continuous	Stream power is a major control of slope toe erosion (Nefeslioglu et al. 2008),	Index of potential energy of water in the channel, using $spi = ln(A_d) \times S_{500}$	The probability of mussel presence increases in areas with moderate stream power
Stream power class ("spc"): binary	which can have negative effects on mussels (Hartfield 1993)	Potential energy of water in the stream channel, classed as either high or low, based on spi	The probability of mussel presence increases in areas with low stream power
*Lateral channel stability ("lcs"): binary	Lateral channel movement and bank erosion could disrupt substrate stability and mussel occurrence (Strayer 1999; Strayer et al. 2004)	Lateral channel movement of > 10 m in 17 years classed as unstable, all else classed as stable	The probability of mussel presence increases in stable channels
*Gravel/pool class ("gpc"): binary	 Conversations with malacologists indicate that mussels are frequently found 	Reaches dominated by gravel are classed at gravel, all else classed as pool reaches	The probability of mussel presence increases within gravel class reaches
Gravel bar proximity ("gbp"): binary	near gravel bars, and (2) areas with persistent gravel bars indicate areas that have stable beds, a necessary condition for mussel persistence (Bates	All areas within 100 m of a gravel bar are classed as adjacent to a gravel bar, all else classed as not adjacent to a gravel bar	The probability of mussel presence increases within 100 m of gravel reaches
*Distance to gravel bar ("dgb"): continuous	1962; Peck 2005; Zigler et al. 2008)	Euclidean distance (m) to nearest gravel bar	The probability of mussel presence increases in areas with close proximity to gravel reaches
*Low-flow surface availability index ("Iwai"): continuous	Refuge during drought periods is necessary for mussel survival (Golladay et al. 2004)	Cross-sectional average of the area of water pixels surrounding each cell, normalized by stream width	The probability of mussel presence increases in areas with higher low-water availability index values
Low-flow surface water availability class ("lwac"): binary	-	Cross-sectional average of the area of water pixels surrounding each cell, normalized by stream width, classed as high or low	The probability of mussel presence increases in areas with high low-water availability classification

Table 1. List of hydrogeomorphic variables generated, including the abbreviated names, the type of layer (continuous/binary), ecological justification, methodological description, and hypotheses of where mussels are expected. * denotes layers used in our model.

Ad is the total drainage area upstream of the site, and \$500 is the slope over 500 m.

Non-metric multidimensional scaling (NMDS)

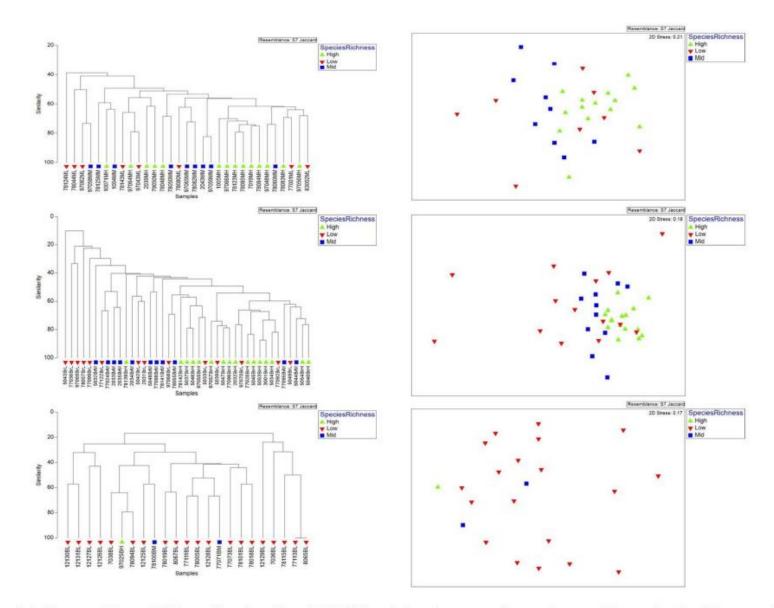


Figure 14. Non-metric multidimensional scaling (NMDS) and dendrogram of mussel assemblages for the Meramec (top), Bourbeuse (middle), and Big (bottom) rivers in relation to river and species richness.